Current and Calcium Responses to Local Activation of Axonal NMDA Receptors in Developing Cerebellar Molecular Layer Interneurons

نویسندگان

  • Bénédicte Rossi
  • David Ogden
  • Isabel Llano
  • Yusuf P. Tan
  • Alain Marty
  • Thibault Collin
چکیده

In developing cerebellar molecular layer interneurons (MLIs), NMDA increases spontaneous GABA release. This effect had been attributed to either direct activation of presynaptic NMDA receptors (preNMDARs) or an indirect pathway involving activation of somato-dendritic NMDARs followed by passive spread of somatic depolarization along the axon and activation of axonal voltage dependent Ca(2+) channels (VDCCs). Using Ca(2+) imaging and electrophysiology, we searched for preNMDARs by uncaging NMDAR agonists either broadly throughout the whole field or locally at specific axonal locations. Releasing either NMDA or glutamate in the presence of NBQX using short laser pulses elicited current transients that were highly sensitive to the location of the spot and restricted to a small number of varicosities. The signal was abolished in the presence of high Mg(2+) or by the addition of APV. Similar paradigms yielded restricted Ca(2+) transients in interneurons loaded with a Ca(2+) indicator. We found that the synaptic effects of NMDA were not inhibited by blocking VDCCs but were impaired in the presence of the ryanodine receptor antagonist dantrolene. Furthermore, in voltage clamped cells, bath applied NMDA triggers Ca(2+) elevations and induces neurotransmitter release in the axonal compartment. Our results suggest the existence of preNMDARs in developing MLIs and propose their involvement in the NMDA-evoked increase in GABA release by triggering a Ca(2+)-induced Ca(2+) release process mediated by presynaptic Ca(2+) stores. Such a mechanism is likely to exert a crucial role in various forms of Ca(2+)-mediated synaptic plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity.

We report that activation of GABA(A) receptors on cerebellar granule cell axons modulates both transmitter release and the excitability of the axon and soma. Axonal GABA(A) receptors depolarize the axon, increasing its excitability and causing calcium influx at axonal varicosities. GABA-mediated subthreshold depolarizations in the axon spread electrotonically to the soma, promoting orthodromic ...

متن کامل

NMDA receptor agonists fail to alter release from cerebellar basket cells.

Previous studies of NMDA receptor (NMDAR) expression on axons of cerebellar molecular layer interneurons have produced conflicting results. We made use of the calcium sensitivity of vesicular release machinery to test for NMDAR activity in basket cell axons. Iontophoresis of l-aspartate, an NMDAR agonist, onto basket cell axon collaterals had no effect on evoked IPSCs measured in synaptically c...

متن کامل

Presynaptic effects of NMDA in cerebellar Purkinje cells and interneurons.

NMDA receptors (NMDARs) are generally believed to mediate exclusively postsynaptic effects at brain synapses. Here we searched for presynaptic effects of NMDA at inhibitory synapses in rat cerebellar slices. In Purkinje cells, application of NMDA enhanced the frequency of miniature IPSCs (mIPSCs) but not that of miniature EPSCs (mEPSCs). This increase in frequency was dependent on the external ...

متن کامل

Dendritic NMDA Receptors Activate Axonal Calcium Channels

NMDA receptor (NMDAR) activation can alter synaptic strength by regulating transmitter release from a variety of neurons in the CNS. As NMDARs are permeable to Ca(2+) and monovalent cations, they could alter release directly by increasing presynaptic Ca(2+) or indirectly by axonal depolarization sufficient to activate voltage-sensitive Ca(2+) channels (VSCCs). Using two-photon microscopy to mea...

متن کامل

Impact of single-site axonal GABAergic synaptic events on cerebellar interneuron activity

Axonal ionotropic receptors are present in a variety of neuronal types, and their function has largely been associated with the modulation of axonal activity and synaptic release. It is usually assumed that activation of axonal GABA(A)Rs comes from spillover, but in cerebellar molecular layer interneurons (MLIs) the GABA source is different: in these cells, GABA release activates presynaptic GA...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012